Matuszek, K. et al. Unexpected energy applications of ionic liquids. Adv. Mater. 36, e2313023 (2024).
Matuszek, K., Kar, M., Pringle, J. M. & MacFarlane, D. R. Phase change materials for renewable energy storage at intermediate temperatures. Chem. Rev. 123, 491–514 (2022).
Dumont, O. et al. Carnot battery technology: a state-of-the-art review. J. Energy Storage 32, 101756 (2020).
Liang, T. et al. Key components for Carnot Battery: technology review, technical barriers and selection criteria. Renew. Sustain. Energy Rev. 163, 112478 (2022).
Novotny, V., Basta, V., Smola, P. & Spale, J. Review of Carnot Battery technology commercial development. Energies 15, 647 (2022).
Steger, D. et al. Design aspects of a reversible heat pump – organic rankine cycle pilot plant for energy storage. Energy 208, 118216 (2020).
Chen, X., Zhang, Z., Qi, C., Ling, X. & Peng, H. State of the art on the high-temperature thermochemical energy storage systems. Energy Convers. Manag. 177, 792–815 (2018).
Yu, N., Wang, R. & Wang, L. Sorption thermal storage for solar energy. Prog. Energy Combust. Sci. 39, 489–514 (2013).
Palacios, A., Elena Navarro, M., Barreneche, C. & Ding, Y. Hybrid 3 in 1 thermal energy storage system – outlook for a novel storage strategy. Appl. Energy 274, 115024 (2020).
Xie, S. et al. A thermally stable phase change material with high latent heat based on an oxalic acid dihydrate/boric acid binary eutectic system. Sol. Energy Mater. Sol. Cells 168, 38–44 (2017).
Xie, S. et al. Thermally stable phase change material with high latent heat and low cost based on an adipic acid/boric acid binary eutectic system. Energy Technol. 5, 1322–1327 (2017).
Huber, C. et al. Boric acid: a high potential candidate for thermochemical energy storage. Energies 12, 1086 (2019).
Kaur, G., Kainth, S., Kumar, R., Sharma, P. & Pandey, O. Reaction kinetics during non-isothermal solid-state synthesis of boron trioxide via boric acid dehydration. React. Kinet., Mech. Catal. 134, 347–359 (2021).
Balcı, S., Sezgi, N. A. & Eren, E. Boron oxide production kinetics using boric acid as raw material. Ind. Eng. Chem. Res. 51, 11091–11096 (2012).
Huber, C. et al. The multistep decomposition of boric acid. Energy Sci. Eng. 8, 1650–1666 (2020).
Bertoluzza, A., Monti, P., Battaglia, M. A. & Bonora, S. Infrared and Raman spectra of orthorhombic, monoclinic and cubic metaboric acid and their relation to the “strength” of the hydrogen bond present. J. Mol. Struct. 64, 123–136 (1980).
Gilson, T. R. Characterisation of ortho- and meta-boric acids in the vapour phase. J. Chem. Soc. Dalton Trans. 9, 2463–2466 (1991).
Elderderi, S. et al. In situ water quantification in natural deep eutectic solvents using portable Raman spectroscopy. Molecules 26, 5488 (2021).
Gönen, M., Rodene, D. D., Panda, S. & Akcil, A. Techno-economic analysis of boric acid production from colemanite mineral and sulfuric acid. Miner. Process. Extr. Metall. Rev. 43, 402–410 (2022).
Hadrup, N., Frederiksen, M. & Sharma, A. K. Toxicity of boric acid, borax and other boron containing compounds: a review. Regul. Toxicol. Pharmacol. 121, 104873 (2021).
Wicklein, B., Kocjan, D., Carosio, F., Camino, G. & Bergström, L. Tuning the nanocellulose–borate interaction to achieve highly flame retardant hybrid materials. Chem. Mater. 28, 1985–1989 (2016).
Shiloff, J. C. Boric acid production. US patent US3650690A (1972).
Taylan, N., Gürbüz, H. & Bulutcu, A. Effects of ultrasound on the reaction step of boric acid production process from colemanite. Ultrason. Sonochem. 14, 633–638 (2007).
Wu, J., Li, B. & Lu, J. Life cycle assessment on boron production: is boric acid extraction from salt-lake brine environmentally friendly? Clean Technol. Environ. Policy 23, 1981–1991 (2021).
Keskin, M. & Karacasu, M. Effect of boron containing additives on asphalt performance and sustainability perspective. Constr. Build. Mater. 218, 434–447 (2019).
Stylianou, E. et al. Evaluation of organic fractions of municipal solid waste as renewable feedstock for succinic acid production. Biotechnol. Biofuels 13, 72 (2020).
Liu, S. et al. A novel medium-temperature form-stable phase change material based on dicarboxylic acid eutectic mixture/expanded graphite composites. Sol. Energy 143, 22–30 (2017).
Drissi, S., Eddhahak, A., Caré, S. & Neji, J. Thermal analysis by DSC of Phase Change Materials, study of the damage effect. J. Build. Eng. 1, 13–19 (2015).
Illers, K.-H. Die Ermittlung des Schmelzpunktes von kristallinen Polymeren mittels Wärmeflusskalorimetrie (DSC). Eur. Polym. J. 10, 911–916 (1974).
Vanderzee, C. E. & Westrum, E. F. Jr Succinic acid. Heat capacities and thermodynamic properties from 5 to 328 K. An efficient drying procedure. J. Chem. Thermodyn. 2, 681–687 (1970).
Chase, M. W. Jr NIST-JANAF thermochemical tables 4th ed. J. Phys. Chem. Ref. Data. 1529–1564 (1998).
Parsons, J. Vibrational spectra of orthorhombic metaboric acid. J. Chem. Phys. 33, 1860–1866 (1960).
Krishnan, K. The Raman spectrum of boric acid. Proc. Indian Acad. Sci. A 57, 103–108 (1963).
Servoss, R. & Clark, H. Vibrational spectra of normal and isotopically labeled boric acid. J. Chem. Phys. 26, 1175–1178 (1957).
Suzuki, M. & Shimanouchi, T. Infrared and Raman spectra of succinic acid crystal. J. Mol. Spectrosc. 28, 394–410 (1968).
Blackman, A. et al. Chemistry 4th edn (Wiley, 2018).
Gasia, J., Martin, M., Solé, A., Barreneche, C. & Cabeza, L. F. Phase change material selection for thermal processes working under partial load operating conditions in the temperature range between 120 and 200 °C. Appl. Sci. 7, 722 (2017).
Mawire, A., Lentswe, K. A. & Shobo, A. Performance comparison of four spherically encapsulated phase change materials for medium temperature domestic applications. J. Energy Storage 23, 469–479 (2019).
Liu, S. et al. Diverting the phase transition behaviour of adipic acid via mesoporous silica confinement. RSC Adv. 6, 111787–111796 (2016).
Neumann, H., Niedermaier, S., Gschwander, S. & Schossig, P. Cycling stability of d-mannitol when used as phase change material for thermal storage applications. Thermochim. Acta 660, 134–143 (2018).
Sagara, A., Nomura, T., Tsubota, M., Okinaka, N. & Akiyama, T. Improvement in thermal endurance of D-mannitol as phase-change material by impregnation into nanosized pores. Mater. Chem. Phys. 146, 253–260 (2014).
Trhlikova, L., Zmeskal, O., Prikryl, R. & Florian, P. Thermal properties of mannitol derivative. Adv. Mater. Res. 1126, 181–186 (2015).
Haillot, D., Bauer, T., Kröner, U. & Tamme, R. Thermal analysis of phase change materials in the temperature range 120–150°C. Thermochim. Acta 513, 49–59 (2011).
Weingrill, H. M., Resch-Fauster, K., Lucyshyn, T. & Zauner, C. High-density polyethylene as phase-change material: long-term stability and aging. Polym. Test. 76, 433–442 (2019).
Weingrill, H. M., Resch‐Fauster, K. & Zauner, C. Applicability of polymeric materials as phase change materials. Macromol. Mater. Eng. 303, 1800355 (2018).
El-Sebaii, A. A., Al-Heniti, S., Al-Agel, F., Al-Ghamdi, A. A. & Al-Marzouki, F. One thousand thermal cycles of magnesium chloride hexahydrate as a promising PCM for indoor solar cooking. Energy Convers. Manag. 52, 1771–1777 (2011).
El-Sebaii, A. A. et al. Fast thermal cycling of acetanilide and magnesium chloride hexahydrate for indoor solar cooking. Energy Convers. Manag. 50, 3104–3111 (2009).
Höhlein, S., König-Haagen, A. & Brüggemann, D. Thermophysical characterization of MgCl2·6H2O, xylitol and erythritol as phase change materials (PCM) for latent heat thermal energy storage (LHTES). Materials 10, 444 (2017).
Purohit, B. & Sistla, V. Inorganic salt hydrate for thermal energy storage application: a review. Energy Storage 3, e212 (2021).
Lalau, Y., Rigal, S., Bédécarrats, J.-P. & Haillot, D. Latent thermal energy storage system for heat recovery between 120 and 150 °C: material stability and corrosion. Energies 17, 787 (2024).
Huang, Z., Gao, X., Xu, T., Fang, Y. & Zhang, Z. Thermal property measurement and heat storage analysis of LiNO3/KCl – expanded graphite composite phase change material. Appl. Energy 115, 265–271 (2014).
Matuszek, K., Vijayaraghavan, R., Kar, M., Mahadevan, S. & MacFarlane, D. R. Guanidinium organic salts as phase‐change materials for renewable energy storage. ChemSusChem 14, 2757–2762 (2021).
Matuszek, K., Vijayaraghavan, R., Kar, M. & MacFarlane, D. R. Role of hydrogen bonding in phase change materials. Cryst. Growth Des. 20, 1285–1291 (2019).
Piper, S. L. et al. Sustainable materials for renewable energy storage in the thermal battery. RSC Sustain. 1, 470–480 (2023).
Ferchaud, C. J., Scherpenborg, R. A. A., Zondag, H. A. & de Boer, R. Thermochemical seasonal solar heat storage in salt hydrates for residential applications – influence of the water vapor pressure on the desorption kinetics of MgSO4.7H2O. Energy Procedia 57, 2436–2440 (2014).
Ferchaud, C. J., Zondag, H., Veldhuis, J. & de Boer, R. Study of the reversible water vapour sorption process of MgSO4.7H2O and MgCl2.6H2O under the conditions of seasonal solar heat storage. J. Phys. Conf. Ser. 395, 012069 (2012).
Okhrimenko, L., Favergeon, L., Johannes, K., Kuznik, F. & Pijolat, M. Thermodynamic study of MgSO4 – H2O system dehydration at low pressure in view of heat storage. Thermochim. Acta 656, 135–143 (2017).