Trimodal thermal energy storage material for renewable energy applications – Nature


  • Matuszek, K. et al. Unexpected energy applications of ionic liquids. Adv. Mater. 36, e2313023 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Matuszek, K., Kar, M., Pringle, J. M. & MacFarlane, D. R. Phase change materials for renewable energy storage at intermediate temperatures. Chem. Rev. 123, 491–514 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Dumont, O. et al. Carnot battery technology: a state-of-the-art review. J. Energy Storage 32, 101756 (2020).

    Article 

    Google Scholar
     

  • Liang, T. et al. Key components for Carnot Battery: technology review, technical barriers and selection criteria. Renew. Sustain. Energy Rev. 163, 112478 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Novotny, V., Basta, V., Smola, P. & Spale, J. Review of Carnot Battery technology commercial development. Energies 15, 647 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Steger, D. et al. Design aspects of a reversible heat pump – organic rankine cycle pilot plant for energy storage. Energy 208, 118216 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X., Zhang, Z., Qi, C., Ling, X. & Peng, H. State of the art on the high-temperature thermochemical energy storage systems. Energy Convers. Manag. 177, 792–815 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yu, N., Wang, R. & Wang, L. Sorption thermal storage for solar energy. Prog. Energy Combust. Sci. 39, 489–514 (2013).

    Article 

    Google Scholar
     

  • Palacios, A., Elena Navarro, M., Barreneche, C. & Ding, Y. Hybrid 3 in 1 thermal energy storage system – outlook for a novel storage strategy. Appl. Energy 274, 115024 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Xie, S. et al. A thermally stable phase change material with high latent heat based on an oxalic acid dihydrate/boric acid binary eutectic system. Sol. Energy Mater. Sol. Cells 168, 38–44 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Xie, S. et al. Thermally stable phase change material with high latent heat and low cost based on an adipic acid/boric acid binary eutectic system. Energy Technol. 5, 1322–1327 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Huber, C. et al. Boric acid: a high potential candidate for thermochemical energy storage. Energies 12, 1086 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kaur, G., Kainth, S., Kumar, R., Sharma, P. & Pandey, O. Reaction kinetics during non-isothermal solid-state synthesis of boron trioxide via boric acid dehydration. React. Kinet., Mech. Catal. 134, 347–359 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Balcı, S., Sezgi, N. A. & Eren, E. Boron oxide production kinetics using boric acid as raw material. Ind. Eng. Chem. Res. 51, 11091–11096 (2012).

    Article 

    Google Scholar
     

  • Huber, C. et al. The multistep decomposition of boric acid. Energy Sci. Eng. 8, 1650–1666 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bertoluzza, A., Monti, P., Battaglia, M. A. & Bonora, S. Infrared and Raman spectra of orthorhombic, monoclinic and cubic metaboric acid and their relation to the “strength” of the hydrogen bond present. J. Mol. Struct. 64, 123–136 (1980).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gilson, T. R. Characterisation of ortho- and meta-boric acids in the vapour phase. J. Chem. Soc. Dalton Trans. 9, 2463–2466 (1991).

    Article 

    Google Scholar
     

  • Elderderi, S. et al. In situ water quantification in natural deep eutectic solvents using portable Raman spectroscopy. Molecules 26, 5488 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gönen, M., Rodene, D. D., Panda, S. & Akcil, A. Techno-economic analysis of boric acid production from colemanite mineral and sulfuric acid. Miner. Process. Extr. Metall. Rev. 43, 402–410 (2022).

    Article 

    Google Scholar
     

  • Hadrup, N., Frederiksen, M. & Sharma, A. K. Toxicity of boric acid, borax and other boron containing compounds: a review. Regul. Toxicol. Pharmacol. 121, 104873 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wicklein, B., Kocjan, D., Carosio, F., Camino, G. & Bergström, L. Tuning the nanocellulose–borate interaction to achieve highly flame retardant hybrid materials. Chem. Mater. 28, 1985–1989 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Shiloff, J. C. Boric acid production. US patent US3650690A (1972).

  • Taylan, N., Gürbüz, H. & Bulutcu, A. Effects of ultrasound on the reaction step of boric acid production process from colemanite. Ultrason. Sonochem. 14, 633–638 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, J., Li, B. & Lu, J. Life cycle assessment on boron production: is boric acid extraction from salt-lake brine environmentally friendly? Clean Technol. Environ. Policy 23, 1981–1991 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Keskin, M. & Karacasu, M. Effect of boron containing additives on asphalt performance and sustainability perspective. Constr. Build. Mater. 218, 434–447 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Stylianou, E. et al. Evaluation of organic fractions of municipal solid waste as renewable feedstock for succinic acid production. Biotechnol. Biofuels 13, 72 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S. et al. A novel medium-temperature form-stable phase change material based on dicarboxylic acid eutectic mixture/expanded graphite composites. Sol. Energy 143, 22–30 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Drissi, S., Eddhahak, A., Caré, S. & Neji, J. Thermal analysis by DSC of Phase Change Materials, study of the damage effect. J. Build. Eng. 1, 13–19 (2015).

    Article 

    Google Scholar
     

  • Illers, K.-H. Die Ermittlung des Schmelzpunktes von kristallinen Polymeren mittels Wärmeflusskalorimetrie (DSC). Eur. Polym. J. 10, 911–916 (1974).

    Article 
    CAS 

    Google Scholar
     

  • Vanderzee, C. E. & Westrum, E. F. Jr Succinic acid. Heat capacities and thermodynamic properties from 5 to 328 K. An efficient drying procedure. J. Chem. Thermodyn. 2, 681–687 (1970).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chase, M. W. Jr NIST-JANAF thermochemical tables 4th ed. J. Phys. Chem. Ref. Data. 1529–1564 (1998).

  • Parsons, J. Vibrational spectra of orthorhombic metaboric acid. J. Chem. Phys. 33, 1860–1866 (1960).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Krishnan, K. The Raman spectrum of boric acid. Proc. Indian Acad. Sci. A 57, 103–108 (1963).

    Article 
    CAS 

    Google Scholar
     

  • Servoss, R. & Clark, H. Vibrational spectra of normal and isotopically labeled boric acid. J. Chem. Phys. 26, 1175–1178 (1957).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Suzuki, M. & Shimanouchi, T. Infrared and Raman spectra of succinic acid crystal. J. Mol. Spectrosc. 28, 394–410 (1968).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Blackman, A. et al. Chemistry 4th edn (Wiley, 2018).

  • Gasia, J., Martin, M., Solé, A., Barreneche, C. & Cabeza, L. F. Phase change material selection for thermal processes working under partial load operating conditions in the temperature range between 120 and 200 °C. Appl. Sci. 7, 722 (2017).

    Article 

    Google Scholar
     

  • Mawire, A., Lentswe, K. A. & Shobo, A. Performance comparison of four spherically encapsulated phase change materials for medium temperature domestic applications. J. Energy Storage 23, 469–479 (2019).

    Article 

    Google Scholar
     

  • Liu, S. et al. Diverting the phase transition behaviour of adipic acid via mesoporous silica confinement. RSC Adv. 6, 111787–111796 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Neumann, H., Niedermaier, S., Gschwander, S. & Schossig, P. Cycling stability of d-mannitol when used as phase change material for thermal storage applications. Thermochim. Acta 660, 134–143 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sagara, A., Nomura, T., Tsubota, M., Okinaka, N. & Akiyama, T. Improvement in thermal endurance of D-mannitol as phase-change material by impregnation into nanosized pores. Mater. Chem. Phys. 146, 253–260 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Trhlikova, L., Zmeskal, O., Prikryl, R. & Florian, P. Thermal properties of mannitol derivative. Adv. Mater. Res. 1126, 181–186 (2015).

    Article 

    Google Scholar
     

  • Haillot, D., Bauer, T., Kröner, U. & Tamme, R. Thermal analysis of phase change materials in the temperature range 120–150°C. Thermochim. Acta 513, 49–59 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Weingrill, H. M., Resch-Fauster, K., Lucyshyn, T. & Zauner, C. High-density polyethylene as phase-change material: long-term stability and aging. Polym. Test. 76, 433–442 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Weingrill, H. M., Resch‐Fauster, K. & Zauner, C. Applicability of polymeric materials as phase change materials. Macromol. Mater. Eng. 303, 1800355 (2018).

    Article 

    Google Scholar
     

  • El-Sebaii, A. A., Al-Heniti, S., Al-Agel, F., Al-Ghamdi, A. A. & Al-Marzouki, F. One thousand thermal cycles of magnesium chloride hexahydrate as a promising PCM for indoor solar cooking. Energy Convers. Manag. 52, 1771–1777 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • El-Sebaii, A. A. et al. Fast thermal cycling of acetanilide and magnesium chloride hexahydrate for indoor solar cooking. Energy Convers. Manag. 50, 3104–3111 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Höhlein, S., König-Haagen, A. & Brüggemann, D. Thermophysical characterization of MgCl2·6H2O, xylitol and erythritol as phase change materials (PCM) for latent heat thermal energy storage (LHTES). Materials 10, 444 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Purohit, B. & Sistla, V. Inorganic salt hydrate for thermal energy storage application: a review. Energy Storage 3, e212 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lalau, Y., Rigal, S., Bédécarrats, J.-P. & Haillot, D. Latent thermal energy storage system for heat recovery between 120 and 150 °C: material stability and corrosion. Energies 17, 787 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Huang, Z., Gao, X., Xu, T., Fang, Y. & Zhang, Z. Thermal property measurement and heat storage analysis of LiNO3/KCl – expanded graphite composite phase change material. Appl. Energy 115, 265–271 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Matuszek, K., Vijayaraghavan, R., Kar, M., Mahadevan, S. & MacFarlane, D. R. Guanidinium organic salts as phase‐change materials for renewable energy storage. ChemSusChem 14, 2757–2762 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matuszek, K., Vijayaraghavan, R., Kar, M. & MacFarlane, D. R. Role of hydrogen bonding in phase change materials. Cryst. Growth Des. 20, 1285–1291 (2019).

    Article 

    Google Scholar
     

  • Piper, S. L. et al. Sustainable materials for renewable energy storage in the thermal battery. RSC Sustain. 1, 470–480 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ferchaud, C. J., Scherpenborg, R. A. A., Zondag, H. A. & de Boer, R. Thermochemical seasonal solar heat storage in salt hydrates for residential applications – influence of the water vapor pressure on the desorption kinetics of MgSO4.7H2O. Energy Procedia 57, 2436–2440 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Ferchaud, C. J., Zondag, H., Veldhuis, J. & de Boer, R. Study of the reversible water vapour sorption process of MgSO4.7H2O and MgCl2.6H2O under the conditions of seasonal solar heat storage. J. Phys. Conf. Ser. 395, 012069 (2012).

    Article 

    Google Scholar
     

  • Okhrimenko, L., Favergeon, L., Johannes, K., Kuznik, F. & Pijolat, M. Thermodynamic study of MgSO4 – H2O system dehydration at low pressure in view of heat storage. Thermochim. Acta 656, 135–143 (2017).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Stay Connected

    0FansLike
    0FollowersFollow
    0SubscribersSubscribe

    Latest Articles