Prümers, H., Betancourt, C. J., Iriarte, J., Robinson, M. & Schaich, M. Lidar reveals pre-Hispanic low-density urbanism in the Bolivian Amazon. Nature 606, 325–328 (2022).
Lombardo, U. & Prümers, H. Pre-Columbian human occupation patterns in the eastern plains of the Llanos de Moxos, Bolivian Amazonia. J. Archaeol. Sci. 37, 1875–1885 (2010).
Hermenegildo, T. Fields and Forests: A Stable Isotope Perspective on the Subsistence Strategies of Past Amazonian Peoples. Doctoral dissertation thesis, Univ. of Cambridge (2022).
d’Alpoim Guedes, J. An archaeobotanical perspective on the relationship between grain crops, non-grain crops and states. Camb. Archaeol. J. 29, 694–696 (2019).
Lathrap, D. W. The Upper Amazon, Vol. 5 (Thames and Hudson, 1970).
Piperno, D. R. & Pearsall, D. M. The Origins of Agriculture in the Lowland Neotropics (Academic Press, 1998).
Scott, J. C. Against the Grain: A Deep History of the Earliest States (Yale Univ. Press, 2017).
Staller, J. E., Tykot, R. H. & Benz, B. F. Histories of Maize in Mesoamerica (Routledge, 2010).
Kennett, D. J. et al. Early isotopic evidence for maize as a staple grain in the Americas. Sci. Adv. 6, eaba3245 (2020).
Burger, R. L. & Van Der Merwe, N. J. Maize and the origin of highland Chavín civilization: an isotopic perspective. Am. Anthropol. 92, 85–95 (1990).
Lombardo, U. et al. Early Holocene crop cultivation and landscape modification in Amazonia. Nature 581, 190–193 (2020).
Aceituno, F. J. & Loaiza, N. The origins and early development of plant food production and farming in Colombian tropical forests. J. Anthropol. Archaeol. 49, 161–172 (2018).
Morell-Hart, S., Dussol, L. & Fedick, S. L. Agriculture in the Ancient Maya Lowlands (Part 1): paleoethnobotanical residues and new perspectives on plant management. J. Archaeol. Res. 31, 561–615 (2023).
Fedick, S. L., Morell-Hart, S. & Dussol, L. Agriculture in the Ancient Maya Lowlands (Part 2): landesque capital and long-term resource management strategies. J. Archaeol. Res. 32, 103–154 (2024).
Iriarte, J. et al. The origins of Amazonian landscapes: plant cultivation, domestication and the spread of food production in tropical South America. Quat. Sci. Rev. 248, 106582 (2020).
Watling, J. et al. Direct archaeological evidence for Southwestern Amazonia as an early plant domestication and food production centre. PLoS ONE 13, e0199868 (2018).
Roosevelt, A. C. Parmana: Prehistoric Maize and Manioc Subsistence Along the Amazon and Orinoco (Academic Press, 1987).
Fausto, C. & Neves, E. G. Was there ever a Neolithic in the Neotropics? Plant familiarisation and biodiversity in the Amazon. Antiquity 92, 1604–1618 (2018).
Neves, E. G. In Human-Environment Interactions. Current and Future Directions (eds Brondizio, E. S. & Moran, E. F.) 371–388 (Springer, 2013).
Schaan, D. In Handbook of South American Archaeology (eds Silverman, H. & Isbell, W. H.) 339–357 (Springer, 2008).
Maezumi, S. Y. et al. The legacy of 4,500 years of polyculture agroforestry in the eastern Amazon. Nature Plants 4, 540–547 (2018).
Watling, J. et al. Impact of pre-Columbian “geoglyph” builders on Amazonian forests. Proc. Natl Acad. Sci. USA 114, 1868 (2017).
Rostain, S. et al. Two thousand years of garden urbanism in the Upper Amazon. Science 383, 183–189 (2024).
Lombardo, U., May, J.-H. & Veit, H. Mid- to late-Holocene fluvial activity behind pre-Columbian social complexity in the southwestern Amazon basin. The Holocene 22, 1035–1045 (2012).
Whitney, B. S., Dickau, R., Mayle, F. E., Soto, J. D. & Iriarte, J. Pre-Columbian landscape impact and agriculture in the Monumental Mound region of the Llanos de Moxos, lowland Bolivia. Quat. Res. 80, 207–217 (2013).
Piperno, D. R., Holst, I., Wessel-Beaver, L. & Andres, T. C. Evidence for the control of phytolith formation in Cucurbita fruits by the hard rind (Hr) genetic locus: archaeological and ecological implications. Proc. Natl Acad. Sci. USA 99, 10923 (2002).
Lombardo, U. Pre-Columbian legacy and modern land use in the Bolivian Amazon. PAGES 31, 16–17 (2023).
Pearsall, D. M., Chandler-Ezell, K. & Chandler-Ezell, A. Identifying maize in neotropical sediments and soils using cob phytoliths. J. Archaeol. Sci. 30, 611–627 (2003).
Rodrigues, L. et al. An insight into pre-Columbian raised fields: the case of San Borja, Bolivian lowlands. SOIL 2, 367–389 (2016).
Knight, M. J. Structural analysis and mechanical origins of gilgai at Boorook, Victoria, Australia. Geoderma 23, 245–283 (1980).
Florinsky, I. V. & Arlashina, H. A. Quantitative topographic analysis of gilgai soil morphology. Geoderma 82, 359–380 (1998).
Kishné, A. S., Morgan, C. L. S. & Neely, H. L. How much surface water can gilgai microtopography capture? J. Hydrol. 513, 256–261 (2014).
Verweij, M. Towards sustainable pond farming. LEISA Mag. 17, 43–45 (2001).
Das, A. et al. Livelihood security of small holder farmers in eastern Himalayas, India: pond based integrated farming system a sustainable approach. Curr. Res. Environ. Sustain. 3, 100076 (2021).
Alam, M. R., Ali, M. A., Hossain, M. A., Molla, M. & Islam, F. J. B. J. O. A. R. Integrated approach of pond based farming systems for sustainable production and income generation. Banglad. J. Agric. Res. 34, 577–584 (2009).
Prestes-Carneiro, G., Takayuki, Y., Jean-Louis, D., Kélig, M. & Philippe, B. Reconstructing freshwater fishing seasonality in a neotropical savanna: first application of swamp eel (Synbranchus marmoratus) sclerochronology to a pre-Columbian Amazonian site (Loma Salvatierra, Bolivia). J. Archaeol. Sci. Rep. 37, 102880 (2021).
Stahl, P. W. Adventive vertebrates and historical ecology in the pre-Columbian neotropics. Diversity 1, 151–165 (2009).
Hutterer, R. Archaeozoological remains (Vertebrata, Gastropoda) from prehispanic sites at Pailón, Bolivia. Beiträge zur Allgemeinen und Vergleichenden Archäologie 17, 325–342 (1997).
Denevan, W. M. The Aboriginal Cultural Geography of the Llanos de Mojos of Bolivia (Univ. of California Press, 1966).
Dickau, R. et al. Diversity of cultivars and other plant resources used at habitation sites in the Llanos de Mojos, Beni, Bolivia: evidence from macrobotanical remains, starch grains, and phytoliths. J. Archaeol. Sci. 39, 357–370 (2012).
Bruno, M. Carbonized plant remains from Loma Salvatierra, Department of Beni, Bolivia. Zeitschrift für Archäologie Außereuropäischer Kulturen 3, 151–206 (2010).
Staller, J. E. In Andean Foodways. The Latin American Studies Book Series (ed. Staller, J. E.) 283–310 (Springer, 2021).
Eva, H. D. et al. A proposal for defining the geographical boundaries of Amazonia. In Synthesis of the Results from an Expert Consultation Workshop Organized by the European Commission in Collaboration with the Amazon Cooperation Treaty Organization – JRC Ispra (eds Eva, H. D. & Huber, O.) https://research.wur.nl/en/publications/a-proposal-for-defining-the-geographical-boundaries-of-amazonia-s (European Commission 2005).
Lombardo, U., Ruiz-Pérez, J. & Madella, M. Sonication improves the efficiency, efficacy and safety of phytolith extraction. Rev. Palaeobot. Palynol. 235, 1–5 (2016).
Piperno, D. R. Phytoliths (AltaMira Press, 2006).
Piperno, D. R. Identifying crop plants with phytoliths (and starch grains) in Central and South America: a review and an update of the evidence. Quat. Int. 193, 146–159 (2009).
Iriarte, J. Assessing the feasibility of identifying maize through the analysis of cross-shaped size and three-dimensional morphology of phytoliths in the grasslands of southeastern South America. J. Archaeol. Sci. 30, 1085–1094 (2003).
Watling, J. et al. Differentiation of neotropical ecosystems by modern soil phytolith assemblages and its implications for palaeoenvironmental and archaeological reconstructions II: Southwestern Amazonian forests. Rev. Palaeobot. Palynol. 226, 30–43 (2016).
Dickau, R. et al. Differentiation of neotropical ecosystems by modern soil phytolith assemblages and its implications for palaeoenvironmental and archaeological reconstructions. Rev. Palaeobot. Palynol. 193, 15–37 (2013).
Hilbert, L. et al. Evidence for mid-Holocene rice domestication in the Americas. Nat. Ecol. Evol. 1, 1693–1698 (2017).
Zhao, Z., Pearsall, D. M., Benfer, R. A. & Piperno, D. R. Distinguishing rice (Oryza sativa Poaceae) from wild Oryza species through phytolith analysis, II: finalized method. Econ. Bot. 52, 134–145 (1998).
Whitney, B. S., Rushton, E. A., Carson, J. F., Iriarte, J. & Mayle, F. E. An improved methodology for the recovery of Zea mays and other large crop pollen, with implications for environmental archaeology in the Neotropics. The Holocene 22, 1087–1096 (2012).
Stockmarr, J. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13, 615–621 (1971).
Bush, M. & Weng, C. Introducing a new (freeware) tool for palynology. J. Biogeogr. 34, 377–380 (2007).
Colinvaux, P. A. & De Oliveira, P. E. Amazon: Pollen Manual and Atlas (Harwood, 1999).
Lima Lorente, F., et al. Atlas Palinológico. Laboratório 14C – CENA/USP. Eds: Fundação de Estudos Agrários Luiz de Queiroz-FEALQ (2017).
Roubik, D. W. & Moreno, P. J. E. Pollen and Spores of Barro Colorado Island (Missouri Botanical Garden, 1991).
DJI L1 Operation Guidebook V1.1 (DJI, 2022).
Brock, F., Higham, T., Ditchfield, P. & Ramsey, C. B. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (Orau). Radiocarbon 52, 103–112 (2010).
Hogg, A. G. et al. SHCal20 Southern Hemisphere calibration, 0–55,000 years cal BP. Radiocarbon 62, 759–778 (2020).
Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).
Bronk Ramsey, C. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51, 1023–1045 (2009).
Ramsey, C. B. & Lee, S. Recent and planned developments of the program OxCal. Radiocarbon 55, 720–730 (2013).
Ramsey, C. B. Deposition models for chronological records. Quat. Sci. Rev. 27, 42–60 (2008).