Gouveia, B. et al. Capillary forces generated by biomolecular condensates. Nature 609, 255–264 (2022).
Ucar, H. et al. Mechanical actions of dendritic-spine enlargement on presynaptic exocytosis. Nature 600, 686–689 (2021).
Handler, A. & Ginty, D. D. The mechanosensory neurons of touch and their mechanisms of activation. Nat. Rev. Neurosci. 22, 521–537 (2021).
Qiu, X. & Müller, U. Sensing sound: cellular specializations and molecular force sensors. Neuron 110, 3667–3687 (2022).
Vining, K. H. & Mooney, D. J. Mechanical forces direct stem cell behaviour in development and regeneration. Nat. Rev. Mol. Cell Biol. 18, 728–742 (2017).
Murthy, S. E., Dubin, A. E. & Patapoutian, A. Piezos thrive under pressure: mechanically activated ion channels in health and disease. Nat. Rev. Mol. Cell Biol. 18, 771–783 (2017).
Zeng, W.-Z. et al. Piezos mediate neuronal sensing of blood pressure and the baroreceptor reflex. Science 362, 464–467 (2018).
Li, M., Pal, A., Aghakhani, A., Pena-Francesch, A. & Sitti, M. Soft actuators for real-world applications. Nat. Rev. Mater. 7, 235–249 (2022).
Saraswathibhatla, A., Indana, D. & Chaudhuri, O. Cell–extracellular matrix mechanotransduction in 3D. Nat. Rev. Mol. Cell Biol. 24, 495–516 (2023).
Gómez-González, M., Latorre, E., Arroyo, M. & Trepat, X. Measuring mechanical stress in living tissues. Nat. Rev. Phys. 2, 300–317 (2020).
de Vasconcelos, L. S. et al. Chemomechanics of rechargeable batteries: status, theories, and perspectives. Chem. Rev. 122, 13043–13107 (2022).
Chen, X. et al. A feedforward mechanism mediated by mechanosensitive ion channel PIEZO1 and tissue mechanics promotes glioma aggression. Neuron 100, 799–815 (2018).
Zhang, J. & Reinhart-King, C. A. Targeting tissue stiffness in metastasis: mechanomedicine improves cancer therapy. Cancer Cell 37, 754–755 (2020).
Mehlenbacher, R. D., Kolbl, R., Lay, A. & Dionne, J. A. Nanomaterials for in vivo imaging of mechanical forces and electrical fields. Nat. Rev. Mater. 3, 17080 (2017).
Blanchard, A. T. & Salaita, K. Emerging uses of DNA mechanical devices. Science 365, 1080–1081 (2019).
Brockman, J. M. et al. Live-cell super-resolved PAINT imaging of piconewton cellular traction forces. Nat. Methods 17, 1018–1024 (2020).
Sun, W., Gao, X., Lei, H., Wang, W. & Cao, Y. Biophysical approaches for applying and measuring biological forces. Adv. Sci. 9, 2105254 (2022).
Lee, C. et al. Giant nonlinear optical responses from photon-avalanching nanoparticles. Nature 589, 230–235 (2021).
Boocock, D., Hino, N., Ruzickova, N., Hirashima, T. & Hannezo, E. Theory of mechanochemical patterning and optimal migration in cell monolayers. Nat. Phys. 17, 267–274 (2021).
Miroshnikova, Y. A. et al. Adhesion forces and cortical tension couple cell proliferation and differentiation to drive epidermal stratification. Nat. Cell Biol. 20, 69–80 (2018).
Petridou, N. I., Spiró, Z. & Heisenberg, C.-P. Multiscale force sensing in development. Nat. Cell Biol. 19, 581–588 (2017).
Liu, C. et al. Heterogeneous microenvironmental stiffness regulates pro-metastatic functions of breast cancer cells. Acta Biomater. 131, 326–340 (2021).
Midolo, L., Schliesser, A. & Fiore, A. Nano-opto-electro-mechanical systems. Nat. Nanotechnol. 13, 11–18 (2018).
Tsoukalas, K., Lahijani, B. V. & Stobbe, S. Impact of transduction scaling laws on nanoelectromechanical systems. Phys. Rev. Lett. 124, 223902 (2020).
Killeen, A., Bertrand, T. & Lee, C. F. Polar fluctuations lead to extensile nematic behavior in confluent tissues. Phys. Rev. Lett. 128, 078001 (2022).
Wu, J., Lewis, A. H. & Grandl, J. Touch, tension, and transduction–the function and regulation of piezo ion channels. Trends Biochem. Sci. 42, 57–71 (2017).
Liu, K., Liu, Y., Lin, D., Pei, A. & Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 4, eaas9820 (2018).
Shan, X. et al. Sub-femtonewton force sensing in solution by super-resolved photonic force microscopy. Nat. Photon. 18, 913–921 (2024).
Ichbiah, S., Delbary, F., McDougall, A., Dumollard, R. & Turlier, H. Embryo mechanics cartography: inference of 3D force atlases from fluorescence microscopy. Nat. Methods 20, 1989–1999 (2023).
Bednarkiewicz, A., Chan, E. M., Kotulska, A., Marciniak, L. & Prorok, K. Photon avalanche in lanthanide doped nanoparticles for biomedical applications: super-resolution imaging. Nanoscale Horiz. 4, 881–889 (2019).
Dudek, M. et al. Size‐dependent photon avalanching in Tm3+ doped LiYF4 nano, micro, and bulk crystals. Adv. Opt. Mater. 10, 2201052 (2022).
Liang, Y. et al. Migrating photon avalanche in different emitters at the nanoscale enables 46th-order optical nonlinearity. Nat. Nanotechnol. 17, 524–530 (2022).
Zhang, Z. et al. Tuning phonon energies in lanthanide‐doped potassium lead halide nanocrystals for enhanced nonlinearity and upconversion. Angew. Chem. Int. Ed. 62, e202212549 (2023).
Skripka, A. et al. A generalized approach to photon avalanche upconversion in luminescent nanocrystals. Nano Lett. 23, 7100–7106 (2023).
Wu, S. et al. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc. Natl Acad. Sci. USA 106, 10917–10921 (2009).
Park, Y. I. et al. Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv. Mater. 21, 4467–4471 (2009).
Ostrowski, A. D. et al. Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals. ACS Nano 6, 2686–2692 (2012).
Gargas, D. J. et al. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat. Nanotechnol. 9, 300–305 (2014).
Lee, C. et al. Indefinite and bidirectional near-infrared nanocrystal photoswitching. Nature 618, 951–958 (2023).
Cohen, B. E. Beyond fluorescence. Nature 467, 407–408 (2010).
Tajon, C. A. et al. Photostable and efficient upconverting nanocrystal-based chemical sensors. Opt. Mater. 84, 345–353 (2018).
Fischer, S., Bronstein, N. D., Swabeck, J. K., Chan, E. M. & Alivisatos, A. P. Precise tuning of surface quenching for luminescence enhancement in core–shell lanthanide-doped nanocrystals. Nano Lett. 16, 7241–7247 (2016).
Johnson, N. J. et al. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc. 139, 3275–3282 (2017).
Szalkowski, M. et al. Predicting the impact of temperature dependent multi-phonon relaxation processes on the photon avalanche behavior in Tm3+:NaYF4 nanoparticles. Opt. Mater. X 12, 100102 (2021).
Liu, X. et al. Extreme optical nonlinearity (>500) at room temperature through sublattice reconstruction. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-4183918/v1 (2024).
Wisser, M. D. et al. Strain-induced modification of optical selection rules in lanthanide-based upconverting nanoparticles. Nano Lett. 15, 1891–1897 (2015).
Lage, M. M., Moreira, R. L., Matinaga, F. M. & Gesland, J.-Y. Raman and infrared reflectivity determination of phonon modes and crystal structure of Czochralski-grown NaLnF4 (Ln = La, Ce, Pr, Sm, Eu, and Gd) single crystals. Chem. Mater. 17, 4523–4529 (2005).
van Swieten, T. P. et al. Extending the dynamic temperature range of Boltzmann thermometers. Light Sci. Appl. 11, 343 (2022).
Casar, J. R., McLellan, C. A., Siefe, C. & Dionne, J. A. Lanthanide-based nanosensors: refining nanoparticle responsiveness for single particle imaging of stimuli. ACS Photon. 8, 3–17 (2020).
McLellan, C. A. et al. Engineering bright and mechanosensitive alkaline-earth rare-earth upconverting nanoparticles. J. Phys. Chem. Lett. 13, 1547–1553 (2022).
Kwock, K. W. et al. Surface-sensitive photon avalanche behavior revealed by single-avalanching-nanoparticle imaging. J. Phys. Chem. C 125, 23976–23982 (2021).
Ribet, S. M. et al. Uncovering the three-dimensional structure of upconverting core–shell nanoparticles with multislice electron ptychography. Appl. Phys. Lett. 124, 240601 (2024).
Majak, M., Misiak, M. & Bednarkiewicz, A. The mechanisms behind the extreme susceptibility of photon avalanche emission to quenching. Mater. Horiz. https://doi.org/10.1039/D4MH00362D (2024).
Runowski, M. et al. Lifetime nanomanometry—high-pressure luminescence of up-converting lanthanide nanocrystals—SrF2:Yb3+,Er3+. Nanoscale 9, 16030–16037 (2017).
Dong, H., Sun, L.-D. & Yan, C.-H. Local structure engineering in lanthanide-doped nanocrystals for tunable upconversion emissions. J. Am. Chem. Soc. 143, 20546–20561 (2021).
Sinatra, N. R. et al. Ultragentle manipulation of delicate structures using a soft robotic gripper. Sci. Robot. 4, eaax5425 (2019).
Skripka, A. et al. Intrinsic optical bistability of photon avalanching nanocrystals. Nat. Photon. https://doi.org/10.1038/s41566-024-01577-x (2025).
Wang, C. et al. Tandem photon avalanches for various nanoscale emitters with optical nonlinearity up to 41st‐order through interfacial energy transfer. Adv. Mater. 36, 2307848 (2024).
Kaushik, S. & Persson, A. I. Unlocking the dangers of a stiffening brain. Neuron 100, 763–765 (2018).
Romani, P., Valcarcel-Jimenez, L., Frezza, C. & Dupont, S. Crosstalk between mechanotransduction and metabolism. Nat. Rev. Mol. Cell Biol. 22, 22–38 (2021).
Jain, S. et al. The role of single-cell mechanical behaviour and polarity in driving collective cell migration. Nat. Phys. 16, 802–809 (2020).
De Belly, H., Paluch, E. K. & Chalut, K. J. Interplay between mechanics and signalling in regulating cell fate. Nat. Rev. Mol. Cell Biol. 23, 465–480 (2022).
Qiu, Y., Myers, D. R. & Lam, W. A. The biophysics and mechanics of blood from a materials perspective. Nat. Rev. Mater. 4, 294–311 (2019).
Van Helvert, S., Storm, C. & Friedl, P. Mechanoreciprocity in cell migration. Nat. Cell Biol. 20, 8–20 (2018).
Firmin, J. et al. Mechanics of human embryo compaction. Nature 629, 646–651 (2024).
Yeoman, B. et al. Adhesion strength and contractility enable metastatic cells to become adurotactic. Cell Rep. 34, 108816 (2021).
Huang, W. et al. Onboard early detection and mitigation of lithium plating in fast-charging batteries. Nat. Commun. 13, 7091 (2022).
Doux, J. M. et al. Stack pressure considerations for room‐temperature all‐solid‐state lithium metal batteries. Adv. Energy Mater. 10, 1903253 (2020).
Brockman, J. M. et al. Mapping the 3D orientation of piconewton integrin traction forces. Nat. Methods 15, 115–118 (2018).
Serwane, F. et al. In vivo quantification of spatially varying mechanical properties in developing tissues. Nat. Methods 14, 181–186 (2017).
Stabley, D. R., Jurchenko, C., Marshall, S. S. & Salaita, K. S. Visualizing mechanical tension across membrane receptors with a fluorescent sensor. Nat. Methods 9, 64–67 (2012).
Nickels, P. C. et al. Molecular force spectroscopy with a DNA origami-based nanoscopic force clamp. Science 354, 305–307 (2016).
Ringer, P. et al. Multiplexing molecular tension sensors reveals piconewton force gradient across talin-1. Nat. Methods 14, 1090–1096 (2017).
Campàs, O. et al. Quantifying cell-generated mechanical forces within living embryonic tissues. Nat. Methods 11, 183–189 (2014).
Polacheck, W. J. & Chen, C. S. Measuring cell-generated forces: a guide to the available tools. Nat. Methods 13, 415–423 (2016).
Vian, A. et al. In situ quantification of osmotic pressure within living embryonic tissues. Nat. Commun. 14, 7023 (2023).
Chan, E. M. et al. Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space. Nano Lett. 10, 1874–1885 (2010).
Levy, E. S. et al. Energy-looping nanoparticles: harnessing excited-state absorption for deep-tissue imaging. ACS Nano 10, 8423–8433 (2016).
Wallace, A. Scanning Probe Microscopy. Analytical Geomicrobiology: A Handbook of Instrumental Techniques 121–147 (Cambridge Univ. Press, 2019).
Xiao, C. et al. Thickness and structure of adsorbed water layer and effects on adhesion and friction at nanoasperity contact. Colloids Interfaces 3, 55 (2019).
Fardian-Melamed, N. et al. Infrared nanosensors of pico- to micro-newton forces. Zenodo https://doi.org/10.5281/zenodo.13380752 (2024).