Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).
Olejník, K. et al. Terahertz electrical writing speed in an antiferromagnetic memory. Sci. Adv. 4, eaar3566 (2018).
Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X 12, 040501 (2022).
Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X 12, 031042 (2022).
Hellenes, A. B., Jungwirth, T., Sinova, J. & Šmejkal, L. P-wave magnets. Preprint at https://arxiv.org/abs/2309.01607 (2024).
Krempaský, J. et al. Altermagnetic lifting of Kramers spin degeneracy. Nature 626, 517–522 (2024).
Amin, O. J. et al. Nanoscale imaging and control of altermagnetism in MnTe. Nature 636, 348–353 (2024).
Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).
Yan, H. et al. Electric-field-controlled antiferromagnetic spintronic devices. Adv. Mater. 32, 1905603 (2020).
Tokura, Y., Seki, S. & Nagaosa, N. Multiferroics of spin origin. Rep. Prog. Phys. 77, 076501 (2014).
Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016).
Cheong, S.-W. & Mostovoy, M. Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007).
Kurumaji, T. Spiral spin structures and skyrmions in multiferroics. Phys. Sci. Rev. 5, 20190016 (2020).
Masuda, R., Kaneko, Y., Tokura, Y. & Takahashi, Y. Electric field control of natural optical activity in a multiferroic helimagnet. Science 372, 496–500 (2021).
Chen, X. et al. Unconventional magnons in collinear magnets dictated by spin space groups. Nature 640, 349–354 (2025).
Hayami, S., Yanagi, Y. & Kusunose, H. Momentum-dependent spin splitting by collinear antiferromagnetic ordering. J. Phys. Soc. Jpn. 88, 123702 (2019).
Yuan, L.-D., Wang, Z., Luo, J.-W., Rashba, E. I. & Zunger, A. Giant momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets. Phys. Rev. B 102, 014422 (2020).
Yuan, L.-D., Wang, Z., Luo, J.-W. & Zunger, A. Prediction of low-Z collinear and noncollinear antiferromagnetic compounds having momentum-dependent spin splitting even without spin-orbit coupling. Phys. Rev. Mater. 5, 014409 (2021).
Chen, X. et al. Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction. Nature 613, 490–495 (2023).
Qin, P. et al. Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction. Nature 613, 485–489 (2023).
Zhu, Y.-P. et al. Observation of plaid-like spin splitting in a noncoplanar antiferromagnet. Nature 626, 523–528 (2024).
Cheong, S.-W. & Huang, F.-T. Altermagnetism with non-collinear spins. npj Quantum Mater. 9, 13 (2024).
Brekke, B., Sukhachov, P., Giil, H. G., Brataas, A. & Linder, J. Minimal models and transport properties of unconventional p-wave magnets. Phys. Rev. Lett. 133, 236703 (2024).
Yamada, R. et al. Gapping the spin-nodal planes of an anisotropic p-wave magnet to induce a large anomalous Hall effect. Preprint at https://arxiv.org/abs/2502.10386 (2025).
Maeda, K., Lu, B., Yada, K. & Tanaka, Y. Theory of tunneling spectroscopy in unconventional p-wave magnet-superconductor hybrid structures. J. Phys. Soc. Jpn. 93, 114703 (2024).
Katsura, H., Nagaosa, N. & Balatsky, A. V. Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95, 057205 (2005).
Sergienko, I. A. & Dagotto, E. Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites. Phys. Rev. B 73, 094434 (2006).
Babkevich, P. et al. Electric field control of chiral magnetic domains in the high-temperature multiferroic CuO. Phys. Rev. B 85, 134428 (2012).
Stein, J. et al. Control of chiral magnetism through electric fields in multiferroic compounds above the long-range multiferroic transition. Phys. Rev. Lett. 119, 177201 (2017).
Sagayama, H. et al. Observation of spin helicity using nonresonant circularly polarized X-ray diffraction analysis. J. Phys. Soc. Jpn. 79, 043711 (2010).
Yamasaki, Y. et al. Electric control of spin helicity in a magnetic ferroelectric. Phys. Rev. Lett. 98, 147204 (2007).
Kurumaji, T. et al. Magnetoelectric responses induced by domain rearrangement and spin structural change in triangular-lattice helimagnets NiI2 and CoI2. Phys. Rev. B 87, 014429 (2013).
Song, Q. et al. Evidence for a single-layer van der Waals multiferroic. Nature 602, 601–605 (2022).
Amini, M. et al. Atomic-scale visualization of multiferroicity in monolayer NiI2. Adv. Mater. 36, 2311342 (2024).
Friedt, J. M., Sanchez, J. P. & Shenoy, G. K. Electronic and magnetic properties of metal diiodides MI2 (M=V, Cr, Mn, Fe, Co, Ni, and Cd) from 129I Mössbauer spectroscopy. J. Chem. Phys. 65, 5093–5102 (1976).
Amoroso, D., Barone, P. & Picozzi, S. Spontaneous skyrmionic lattice from anisotropic symmetric exchange in a Ni-halide monolayer. Nat. Commun. 11, 5784 (2020).
Botana, A. S. & Norman, M. R. Electronic structure and magnetism of transition metal dihalides: bulk to monolayer. Phys. Rev. Mater. 3, 44001 (2019).
Fumega, A. O. & Lado, J. Microscopic origin of multiferroic order in monolayer NiI2. 2D Mater. 9, 025010 (2022).
Kuindersma, S., Sanchez, J. & Haas, C. Magnetic and structural investigations on NiI2 and CoI2. Physica B+C 111, 231–248 (1981).
Tseng, Y., Occhialini, C. A. et al. Shear‐mediated stabilization of spin spiral order in multiferroic NiI2. Adv. Mater. 37, 2417434 (2025).
Arima, T.-h. Ferroelectricity induced by proper-screw type magnetic order. J. Phys. Soc. Jpn. 76, 073702 (2007).
Xiang, H. J., Kan, E. J., Zhang, Y., Whangbo, M.-H. & Gong, X. G. General theory for the ferroelectric polarization induced by spin-spiral order. Phys. Rev. Lett. 107, 157202 (2011).
Gao, F. Y. et al. Giant chiral magnetoelectric oscillations in a van der Waals multiferroic. Nature 632, 273–279 (2024).
Braunecker, B., Japaridze, G. I., Klinovaja, J. & Loss, D. Spin-selective Peierls transition in interacting one-dimensional conductors with spin-orbit interaction. Phys. Rev. B 82, 045127 (2010).
Choy, T.-P., Edge, J. M., Akhmerov, A. R. & Beenakker, C. W. J. Majorana fermions emerging from magnetic nanoparticles on a superconductor without spin-orbit coupling. Phys. Rev. B 84, 195442 (2011).
Martin, I. & Morpurgo, A. F. Majorana fermions in superconducting helical magnets. Phys. Rev. B 85, 144505 (2012).
Egger, R. & Flensberg, K. Emerging Dirac and Majorana fermions for carbon nanotubes with proximity-induced pairing and spiral magnetic field. Phys. Rev. B 85, 235462 (2012).
Nadj-Perge, S., Drozdov, I. K., Bernevig, B. A. & Yazdani, A. Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor. Phys. Rev. B 88, 020407 (2013).
Cheong, S.-W. & Huang, F.-T. Kinetomagnetism of chirality and its applications. Appl. Phys. Lett. 125, 060501 (2024).
Masuda, H. et al. Room temperature chirality switching and detection in a helimagnetic MnAu2 thin film. Nat. Commun. 15, 1999 (2024).
Chen, G., Khosravian, M., Lado, J. L. & Ramires, A. Designing spin-textured flat bands in twisted graphene multilayers via helimagnet encapsulation. 2D Mater. 9, 024002 (2022).
Sandratskii, L. Noncollinear magnetism in itinerant-electron systems: theory and applications. Adv. Phys. 47, 91–160 (1998).
Mayo, A. H. et al. Band asymmetry–driven nonreciprocal electronic transport in a helimagnetic semimetal α-EuP3. Proc. Natl Acad. Sci. 122, e2405839122 (2025).
Grinberg, I. et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503, 509–512 (2013).
Matsubara, M. et al. Magnetoelectric domain control in multiferroic TbMnO3. Science 348, 1112–1115 (2015).
Zhang, L. et al. Room-temperature electrically switchable spin–valley coupling in a van der Waals ferroelectric halide perovskite with persistent spin helix. Nat. Photon. 16, 529–537 (2022).
Niu, C. et al. Tunable circular photogalvanic and photovoltaic effect in 2D tellurium with different chirality. Nano Lett. 23, 3599–3606 (2023).
Wang, S. et al. Circular photogalvanic effect in oxide two-dimensional electron gases. Phys. Rev. Lett. 128, 187401 (2022).
McIver, J., Hsieh, D., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Control over topological insulator photocurrents with light polarization. Nat. Nanotechnol. 7, 96–100 (2012).
Kim, J. H. et al. Terahertz evidence of electromagnon excitations in the multiferroic van der Waals insulator NiI2. Phys. Rev. B 108, 064414 (2023).
Martin, L. W. & Rappe, A. M. Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2, 16087 (2017).
Liu, H. et al. Vapor deposition of magnetic van der Waals NiI2 crystals. ACS Nano 14, 10544–10551 (2020).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
Herath, U. et al. PyProcar: a Python library for electronic structure pre/post-processing. Comput. Phys. Commun. 251, 107080 (2020).
Larsen, A. H. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).
Kokalj, A. XCrySDen—a new program for displaying crystalline structures and electron densities. J. Mol. Graph. Model. 17, 176–179 (1999).
Song, Q. Electrical switching of an unconventional odd-parity magnet. Harvard Dataverse https://doi.org/doi:10.7910/DVN/MSCHDT (2025).