Electrical switching of a p-wave magnet  – Nature


  • Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Olejník, K. et al. Terahertz electrical writing speed in an antiferromagnetic memory. Sci. Adv. 4, eaar3566 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X 12, 040501 (2022).


    Google Scholar
     

  • Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X 12, 031042 (2022).


    Google Scholar
     

  • Hellenes, A. B., Jungwirth, T., Sinova, J. & Šmejkal, L. P-wave magnets. Preprint at https://arxiv.org/abs/2309.01607 (2024).

  • Krempaský, J. et al. Altermagnetic lifting of Kramers spin degeneracy. Nature 626, 517–522 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amin, O. J. et al. Nanoscale imaging and control of altermagnetism in MnTe. Nature 636, 348–353 (2024).

  • Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, H. et al. Electric-field-controlled antiferromagnetic spintronic devices. Adv. Mater. 32, 1905603 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tokura, Y., Seki, S. & Nagaosa, N. Multiferroics of spin origin. Rep. Prog. Phys. 77, 076501 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cheong, S.-W. & Mostovoy, M. Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurumaji, T. Spiral spin structures and skyrmions in multiferroics. Phys. Sci. Rev. 5, 20190016 (2020).

  • Masuda, R., Kaneko, Y., Tokura, Y. & Takahashi, Y. Electric field control of natural optical activity in a multiferroic helimagnet. Science 372, 496–500 (2021).

  • Chen, X. et al. Unconventional magnons in collinear magnets dictated by spin space groups. Nature 640, 349–354 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hayami, S., Yanagi, Y. & Kusunose, H. Momentum-dependent spin splitting by collinear antiferromagnetic ordering. J. Phys. Soc. Jpn. 88, 123702 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Yuan, L.-D., Wang, Z., Luo, J.-W., Rashba, E. I. & Zunger, A. Giant momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets. Phys. Rev. B 102, 014422 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yuan, L.-D., Wang, Z., Luo, J.-W. & Zunger, A. Prediction of low-Z collinear and noncollinear antiferromagnetic compounds having momentum-dependent spin splitting even without spin-orbit coupling. Phys. Rev. Mater. 5, 014409 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X. et al. Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction. Nature 613, 490–495 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin, P. et al. Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction. Nature 613, 485–489 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Y.-P. et al. Observation of plaid-like spin splitting in a noncoplanar antiferromagnet. Nature 626, 523–528 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheong, S.-W. & Huang, F.-T. Altermagnetism with non-collinear spins. npj Quantum Mater. 9, 13 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Brekke, B., Sukhachov, P., Giil, H. G., Brataas, A. & Linder, J. Minimal models and transport properties of unconventional p-wave magnets. Phys. Rev. Lett. 133, 236703 (2024).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamada, R. et al. Gapping the spin-nodal planes of an anisotropic p-wave magnet to induce a large anomalous Hall effect. Preprint at https://arxiv.org/abs/2502.10386 (2025).

  • Maeda, K., Lu, B., Yada, K. & Tanaka, Y. Theory of tunneling spectroscopy in unconventional p-wave magnet-superconductor hybrid structures. J. Phys. Soc. Jpn. 93, 114703 (2024).

  • Katsura, H., Nagaosa, N. & Balatsky, A. V. Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95, 057205 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sergienko, I. A. & Dagotto, E. Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites. Phys. Rev. B 73, 094434 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Babkevich, P. et al. Electric field control of chiral magnetic domains in the high-temperature multiferroic CuO. Phys. Rev. B 85, 134428 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Stein, J. et al. Control of chiral magnetism through electric fields in multiferroic compounds above the long-range multiferroic transition. Phys. Rev. Lett. 119, 177201 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sagayama, H. et al. Observation of spin helicity using nonresonant circularly polarized X-ray diffraction analysis. J. Phys. Soc. Jpn. 79, 043711 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Yamasaki, Y. et al. Electric control of spin helicity in a magnetic ferroelectric. Phys. Rev. Lett. 98, 147204 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurumaji, T. et al. Magnetoelectric responses induced by domain rearrangement and spin structural change in triangular-lattice helimagnets NiI2 and CoI2. Phys. Rev. B 87, 014429 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Song, Q. et al. Evidence for a single-layer van der Waals multiferroic. Nature 602, 601–605 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Amini, M. et al. Atomic-scale visualization of multiferroicity in monolayer NiI2. Adv. Mater. 36, 2311342 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Friedt, J. M., Sanchez, J. P. & Shenoy, G. K. Electronic and magnetic properties of metal diiodides MI2 (M=V, Cr, Mn, Fe, Co, Ni, and Cd) from 129I Mössbauer spectroscopy. J. Chem. Phys. 65, 5093–5102 (1976).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Amoroso, D., Barone, P. & Picozzi, S. Spontaneous skyrmionic lattice from anisotropic symmetric exchange in a Ni-halide monolayer. Nat. Commun. 11, 5784 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Botana, A. S. & Norman, M. R. Electronic structure and magnetism of transition metal dihalides: bulk to monolayer. Phys. Rev. Mater. 3, 44001 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Fumega, A. O. & Lado, J. Microscopic origin of multiferroic order in monolayer NiI2. 2D Mater. 9, 025010 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kuindersma, S., Sanchez, J. & Haas, C. Magnetic and structural investigations on NiI2 and CoI2. Physica B+C 111, 231–248 (1981).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tseng, Y., Occhialini, C. A. et al. Shear‐mediated stabilization of spin spiral order in multiferroic NiI2. Adv. Mater. 37, 2417434 (2025).

  • Arima, T.-h. Ferroelectricity induced by proper-screw type magnetic order. J. Phys. Soc. Jpn. 76, 073702 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Xiang, H. J., Kan, E. J., Zhang, Y., Whangbo, M.-H. & Gong, X. G. General theory for the ferroelectric polarization induced by spin-spiral order. Phys. Rev. Lett. 107, 157202 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, F. Y. et al. Giant chiral magnetoelectric oscillations in a van der Waals multiferroic. Nature 632, 273–279 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braunecker, B., Japaridze, G. I., Klinovaja, J. & Loss, D. Spin-selective Peierls transition in interacting one-dimensional conductors with spin-orbit interaction. Phys. Rev. B 82, 045127 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Choy, T.-P., Edge, J. M., Akhmerov, A. R. & Beenakker, C. W. J. Majorana fermions emerging from magnetic nanoparticles on a superconductor without spin-orbit coupling. Phys. Rev. B 84, 195442 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Martin, I. & Morpurgo, A. F. Majorana fermions in superconducting helical magnets. Phys. Rev. B 85, 144505 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Egger, R. & Flensberg, K. Emerging Dirac and Majorana fermions for carbon nanotubes with proximity-induced pairing and spiral magnetic field. Phys. Rev. B 85, 235462 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Nadj-Perge, S., Drozdov, I. K., Bernevig, B. A. & Yazdani, A. Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor. Phys. Rev. B 88, 020407 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Cheong, S.-W. & Huang, F.-T. Kinetomagnetism of chirality and its applications. Appl. Phys. Lett. 125, 060501 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Masuda, H. et al. Room temperature chirality switching and detection in a helimagnetic MnAu2 thin film. Nat. Commun. 15, 1999 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, G., Khosravian, M., Lado, J. L. & Ramires, A. Designing spin-textured flat bands in twisted graphene multilayers via helimagnet encapsulation. 2D Mater. 9, 024002 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sandratskii, L. Noncollinear magnetism in itinerant-electron systems: theory and applications. Adv. Phys. 47, 91–160 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mayo, A. H. et al. Band asymmetry–driven nonreciprocal electronic transport in a helimagnetic semimetal α-EuP3. Proc. Natl Acad. Sci. 122, e2405839122 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grinberg, I. et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503, 509–512 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsubara, M. et al. Magnetoelectric domain control in multiferroic TbMnO3. Science 348, 1112–1115 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L. et al. Room-temperature electrically switchable spin–valley coupling in a van der Waals ferroelectric halide perovskite with persistent spin helix. Nat. Photon. 16, 529–537 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Niu, C. et al. Tunable circular photogalvanic and photovoltaic effect in 2D tellurium with different chirality. Nano Lett. 23, 3599–3606 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, S. et al. Circular photogalvanic effect in oxide two-dimensional electron gases. Phys. Rev. Lett. 128, 187401 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McIver, J., Hsieh, D., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Control over topological insulator photocurrents with light polarization. Nat. Nanotechnol. 7, 96–100 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kim, J. H. et al. Terahertz evidence of electromagnon excitations in the multiferroic van der Waals insulator NiI2. Phys. Rev. B 108, 064414 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Martin, L. W. & Rappe, A. M. Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2, 16087 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, H. et al. Vapor deposition of magnetic van der Waals NiI2 crystals. ACS Nano 14, 10544–10551 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Herath, U. et al. PyProcar: a Python library for electronic structure pre/post-processing. Comput. Phys. Commun. 251, 107080 (2020).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Larsen, A. H. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    Article 

    Google Scholar
     

  • Kokalj, A. XCrySDen—a new program for displaying crystalline structures and electron densities. J. Mol. Graph. Model. 17, 176–179 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, Q. Electrical switching of an unconventional odd-parity magnet. Harvard Dataverse https://doi.org/doi:10.7910/DVN/MSCHDT (2025).



  • Source link

    Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Stay Connected

    0FansLike
    0FollowersFollow
    0SubscribersSubscribe

    Latest Articles