Hu, H. & Dominguez, F. Understanding the role of tropical moisture in atmospheric rivers. J. Geophys. Res. Atmos. 124, 13826–13842 (2019).
Sodemann, H. & Stohl, A. Moisture origin and meridional transport in atmospheric rivers and their association with multiple cyclones. Mon. Weather Rev. 141, 2850–2868 (2013).
Zhu, Y. & Newell, R. E. A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Weather Rev. 126, 725–735 (1998).
Nash, D., Waliser, D., Guan, B., Ye, H. & Ralph, F. M. The role of atmospheric rivers in extratropical and polar hydroclimate. J. Geophys. Res. Atmos. 123, 6804–6821 (2018).
Newman, M., Kiladis, G. N., Weickmann, K. M., Ralph, F. M. & Sardeshmukh, P. D. Relative contributions of synoptic and low-frequency eddies to time-mean atmospheric moisture transport, including the role of atmospheric rivers. J. Clim. 25, 7341–7361 (2012).
Dettinger, M. D., Ralph, F. M., Das, T., Neiman, P. J. & Cayan, D. R. Atmospheric rivers, floods and the water resources of California. Water 3, 445–478 (2011).
Paltan, H. et al. Global floods and water availability driven by atmospheric rivers. Geophys. Res. Lett. 44, 10387–10395 (2017).
Waliser, D. & Guan, B. Extreme winds and precipitation during landfall of atmospheric rivers. Nat. Geosci. 10, 179–183 (2017).
Ralph, F. M., Cordeira, J. M., Neiman, P. J. & Hughes, M. Landfalling atmospheric rivers, the Sierra barrier jet, and extreme daily precipitation in northern California’s Upper Sacramento River watershed. J. Hydrometeorol. 17, 1905–1914 (2016).
Lavers, D. A. et al. Winter floods in Britain are connected to atmospheric rivers. Geophys. Res. Lett. https://doi.org/10.1029/2011GL049783 (2011).
Dettinger, M. Climate change, atmospheric rivers, and floods in California – a multimodel analysis of storm frequency and magnitude changes1. J. Am. Water Resour. Assoc. 47, 514–523 (2011).
Cordeira, J. M. et al. A 142-year climatology of northern California landslides and atmospheric rivers. Bull. Am. Meteorol. Soc. 100, 1499–1509 (2019).
Zhu, Y. & Newell, R. E. Atmospheric rivers and bombs. Geophys. Res. Lett. 21, 1999–2002 (1994).
Mo, R. Prequel to the stories of warm conveyor belts and atmospheric rivers: the moist tongues identified by Rossby and his collaborators in the 1930s. Bull. Am. Meteorol. Soc. 103, E1019–E1040 (2022).
Dacre, H. F., Martínez-Alvarado, O. & Mbengue, C. O. Linking atmospheric rivers and warm conveyor belt airflows. J. Hydrometeorol. 20, 1183–1196 (2019).
Zhang, Z., Ralph, F. M. & Zheng, M. The relationship between extratropical cyclone strength and atmospheric river intensity and position. Geophys. Res. Lett. 46, 1814–1823 (2019).
Guo, Y., Shinoda, T., Guan, B., Waliser, D. E. & Chang, E. K. M. Statistical relationship between atmospheric rivers and extratropical cyclones and anticyclones. J. Clim. 33, 7817–7834 (2020).
Park, C., Son, S.-W. & Guan, B. Multiscale nature of atmospheric rivers. Geophys. Res. Lett. 50, e2023GL102784 (2023).
Benedict, J. J., Clement, A. C. & Medeiros, B. Atmospheric blocking and other large-scale precursor patterns of landfalling atmospheric rivers in the North Pacific: a CESM2 study. J. Geophys. Res. Atmos. 124, 11330–11353 (2019).
Cobb, A., Michaelis, A., Iacobellis, S., Ralph, F. M. & Monache, L. D. Atmospheric river sectors: definition and characteristics observed using dropsondes from 2014–20 CalWater and AR Recon. Mon. Weather Rev. 149, 623–644 (2021).
Gao, Y. et al. Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America. Geophys. Res. Lett. 42, 7179–7186 (2015).
Baek, S. H. & Lora, J. M. Counterbalancing influences of aerosols and greenhouse gases on atmospheric rivers. Nat. Clim. Change 11, 958–965 (2021).
Payne, A. E. et al. Responses and impacts of atmospheric rivers to climate change. Nat. Rev. Earth Environ. 1, 143–157 (2020).
Gonzales, K. R., Swain, D. L., Nardi, K. M., Barnes, E. A. & Diffenbaugh, N. S. Recent warming of landfalling atmospheric rivers along the west coast of the United States. J. Geophys. Res. Atmos. 124, 6810–6826 (2019).
Shields, C. A. et al. Meridional heat transport during atmospheric rivers in high-resolution CESM climate projections. Geophys. Res. Lett. 46, 14702–14712 (2019).
Wille, J. D. et al. West Antarctic surface melt triggered by atmospheric rivers. Nat. Geosci. 12, 911–916 (2019).
Neff, W. Atmospheric rivers melt Greenland. Nat. Clim. Change 8, 857–858 (2018).
Pohl, B. et al. Relationship between weather regimes and atmospheric rivers in Eest Antarctica. J. Geophys. Res. Atmos. 126, e2021JD035294 (2021).
Maclennan, M. L. et al. Climatology and surface impacts of atmospheric rivers on West Antarctica. Cryosphere 17, 865–881 (2023).
Hegyi, B. M. & Taylor, P. C. The unprecedented 2016–2017 Arctic Sea ice growth season: the crucial role of atmospheric rivers and longwave fluxes. Geophys. Res. Lett. 45, 5204–5212 (2018).
Mattingly, K. S., Mote, T. L. & Fettweis, X. Atmospheric river impacts on Greenland ice sheet surface mass balance. J. Geophys. Res. Atmos. 123, 8538–8560 (2018).
Zhang, P. et al. More frequent atmospheric rivers slow the seasonal recovery of Arctic sea ice. Nat. Clim. Change 13, 266–273 (2023).
Liang, K., Wang, J., Luo, H. & Yang, Q. The role of atmospheric rivers in Antarctic Sea ice variations. Geophys. Res. Lett. 50, e2022GL102588 (2023).
Wille, J. D. et al. The extraordinary March 2022 East Antarctica “heat” wave. Part I: observations and meteorological drivers. J. Clim. 37, 757–778 (2024).
Mattingly, K. S. et al. Increasing extreme melt in northeast Greenland linked to foehn winds and atmospheric rivers. Nat. Commun. 14, 1743 (2023).
Raymond, C., Shreevastava, A., Slinskey, E. & Waliser, D. Linkages between atmospheric rivers and humid heat across the United States. Nat. Hazards Earth Syst. Sci. 24, 791–801 (2024).
Mo, R., Lin, H. & Vitart, F. An anomalous warm-season trans-Pacific atmospheric river linked to the 2021 western North America heatwave. Commun. Earth Environ. 3, 127 (2022).
Lora, J. M., Shields, C. A. & Rutz, J. J. Consensus and disagreement in atmospheric river detection: ARTMIP global catalogues. Geophys. Res. Lett. 47, e2020GL089302 (2020).
Roberts, J. B., Robertson, F. R., Clayson, C. A. & Bosilovich, M. G. Characterization of turbulent latent and sensible heat flux exchange between the atmosphere and ocean in MERRA. J. Clim. 25, 821–838 (2012).
Tan, Y., Yang, S., Zwiers, F., Wang, Z. & Sun, Q. Moisture budget analysis of extreme precipitation associated with different types of atmospheric rivers over western North America. Clim. Dyn. 58, 793–809 (2022).
Röthlisberger, M. & Papritz, L. Quantifying the physical processes leading to atmospheric hot extremes at a global scale. Nat. Geosci. 16, 210–216 (2023).
Ha, K.-J. et al. Dynamics and characteristics of dry and moist heatwaves over East Asia. NPJ Clim. Atmos. Sci. 5, 49 (2022).
Zschenderlein, P., Pfahl, S., Wernli, H. & Fink, A. H. A Lagrangian analysis of upper-tropospheric anticyclones associated with heat waves in Europe. Weather Clim. Dyn. 1, 191–206 (2020).
Pfahl, S. & Wernli, H. Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-)daily time scales. Geophys. Res. Lett. https://doi.org/10.1029/2012GL052261 (2012).
Kornhuber, K. et al. Amplified Rossby waves enhance risk of concurrent heatwaves in major breadbasket regions. Nat. Clim. Change 10, 48–53 (2020).
Zavadoff, B. L. & Kirtman, B. P. Dynamic and thermodynamic modulators of European atmospheric rivers. J. Clim. 33, 4167–4185 (2020).
Speizer, S., Raymond, C., Ivanovich, C. & Horton, R. M. Concentrated and intensifying humid heat extremes in the IPCC AR6 regions. Geophys. Res. Lett. 49, e2021GL097261 (2022).
Baggett, C. F., Barnes, E. A., Maloney, E. D. & Mundhenk, B. D. Advancing atmospheric river forecasts into subseasonal-to-seasonal time scales. Geophys. Res. Lett. 44, 7528–7536 (2017).
DeFlorio, M. J., Waliser, D. E., Guan, B., Ralph, F. M. & Vitart, F. Global evaluation of atmospheric river subseasonal prediction skill. Clim. Dyn. 52, 3039–3060 (2019).
Francis, D. et al. Atmospheric rivers drive exceptional Saharan dust transport towards Europe. Atmos. Res. 266, 105959 (2022).
Gelaro, R. et al. The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).
Collow, A. B. M. et al. An overview of ARTMIP’s tier 2 reanalysis intercomparison: uncertainty in the detection of atmospheric rivers and their associated precipitation. J. Geophys. Res. Atmos. 127, e2021JD036155 (2022).
Rutz, J. J. et al. The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): quantifying uncertainties in atmospheric river climatology. J. Geophys. Res. Atmos. 124, 13777–13802 (2019).
Shields, C. A. et al. Atmospheric River Tracking Method Intercomparison Project (ARTMIP): project goals and experimental design. Geosci. Model Dev. 11, 2455–2474 (2018).
Lora, J. M., Mitchell, J. L., Risi, C. & Tripati, A. E. North Pacific atmospheric rivers and their influence on western North America at the Last Glacial Maximum. Geophys. Res. Lett. 44, 1051–1059 (2017).
Skinner, C. B., Lora, J. M., Payne, A. E. & Poulsen, C. J. Atmospheric river changes shaped mid-latitude hydroclimate since the mid-Holocene. Earth Planet. Sci. Lett. 541, 116293 (2020).
Guan, B. & Waliser, D. E. Detection of atmospheric rivers: evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos. 120, 12514–12535 (2015).
Prabhat, et al. ClimateNet: an expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather. Geosci. Model Dev. 14, 107–124 (2021).
Mundhenk, B. D., Barnes, E. A. & Maloney, E. D. All-season climatology and variability of atmospheric river frequencies over the North Pacific. J. Clim. 29, 4885–4903 (2016).
Reid, K. J., King, A. D., Lane, T. P. & Short, E. The sensitivity of atmospheric river identification to integrated water vapor transport threshold, resolution, and regridding method. J. Geophys. Res. Atmos. 125, e2020JD032897 (2020).
Shearer, E. J. et al. Examination of global midlatitude atmospheric river lifecycles using an object-oriented methodology. J. Geophys. Res. Atmos. 125, e2020JD033425 (2020).
McClenny, E. E., Ullrich, P. A. & Grotjahn, R. Sensitivity of atmospheric river vapor transport and precipitation to uniform sea surface temperature increases. J. Geophys. Res. Atmos. 125, e2020JD033421 (2020).
Luo, M., Wu, S., Liu, Z. & Lau, N.-C. Contrasting circulation patterns of dry and humid heatwaves over southern China. Geophys. Res. Lett. 49, e2022GL099243 (2022).
Scholz, S. R. AnalyticalCode_ARWarmWintersandExtremes. Zenodo https://doi.org/10.5281/zenodo.13695561 (2024).