Arrazola, J. M. et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 54–60 (2021).
Mohanty, A. et al. Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation. Nat. Biomed. Eng. 4, 223–231 (2020).
Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photon. 15, 102–114 (2021).
Khial, P. P. et al. Nanophotonic optical gyroscope with reciprocal sensitivity enhancement. Nat. Photon. 12, 671–675 (2018).
Rickman, A. The commercialization of silicon photonics. Nat. Photon. 8, 579–582 (2014).
Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).
Nagarajan, R. et al. 2.5D heterogeneous integration for silicon photonics engines in optical transceivers. IEEE J. Selec. Top. Quant. Electron. 29, 8200209 (2023).
Bian, Y. et al. 3D integrated laser attach technology on a 300-mm monolithic CMOS silicon photonics platform. IEEE J. Sel. Top. Quant. Electron. 29, 8200519 (2023).
Marinins, A. et al. Wafer-scale hybrid integration of InP DFB lasers on Si photonics by flip-chip bonding with sub-300 nm alignment precision. IEEE J. Selec. Top. Quant. Electron. 29, 8200311 (2023).
Ramirez, J. M. et al. III-V-on-silicon integration: from hybrid devices to heterogeneous photonic integrated circuits. IEEE J. Selec. Top. Quant. Electron. 26, 6100213 (2020).
Fujii, T. et al. Multiwavelength membrane laser array using selective area growth on directly bonded InP on SiO2/Si. Optica 7, 838–846 (2020).
Xiang, C. et al. Narrow-linewidth III-V/Si/Si3N4 laser using multilayer heterogeneous integration. Optica 7, 20–21 (2020).
Margalit, N. et al. Perspective on the future of silicon photonics and electronics. Appl. Phys. Lett. 118, 220501 (2021).
Zhang, W. et al. Silicon photonic integrated optoelectronic oscillator for frequency-tunable microwave generation. J. Lightwav. Technol. 36, 4655–4663 (2018).
Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).
Fotiadis, K. et al. Silicon photonic 16 x 16 cyclic AWGR for DWDM O-band interconnects. IEEE Photon. Technol. Lett. 32, 1233–1236 (2020).
Khani, M. et al. SiP-ML: high-bandwidth optical network interconnects for machine learning training. In Proc. ACM Special Interest Group on Data Communication Conference 657–675 (ACM, 2021).
Coomans, W. et al. XG-fast: the 5th generation broadband. IEEE Commun. Mag. 53, 83–88 (2015).
Driscoll, J. B., Perea, P., Kauffman, A., Zilkie, A. J. & Ver Steeg, B. Pioneering silicon photonics for wearable sensors. In Proc. Optical Fiber Communications Conference and Exhibition (OFC) 2023 Th1A.6 1–3 (Optica Publishing Group, 2023).
De Dobbelaere, P. et al. Packaging of silicon photonics systems. In Proc. Optical Fiber Communication Conference (OFC) 2014 W3I.2 1–3 (Optica Publishing Group, 2014).
Roelkens, G. et al. Present and future of micro-transfer printing for heterogeneous photonic integrated circuits. APL Photon. 9, 010901 (2024).
Intel. Intel Labs announces integrated photonics research advancement. Intel Newsroom https://www.intel.com/content/www/us/en/newsroom/news/intel-labs-announces-integrated-photonics-research-advancement.html (2022).
Tower Semiconductor. Tower Semiconductor announces World’s first heterogeneous integration of quantum dot lasers on its popular SiPho foundry platform PH18. Press Releases https://towersemi.com/2023/03/02/03022023/ (2023).
Shi, B. et al. MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3 μm quantum dot laser applications. Appl. Phys. Lett. 114, 172102 (2019).
Chen, S. et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photon. 10, 307–311 (2016).
Wan, Y. et al. InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 μm band. Appl. Phys. Lett. 107, 081106 (2015).
Liu, A. Y. et al. Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon. IEEE J. Selec. Top. Quant. Electron. 21, 690–697 (2015).
Shang, C. et al. High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters. Optica 8, 749–754 (2021).
Shang, C. et al. Electrically pumped quantum-dot lasers grown on 300 mm patterned Si photonic wafers. Light: Sci. Appl. 11, 299 (2022).
Wei, W.-Q. et al. Monolithic integration of embedded III-V lasers on SOI. Light Sci. Appl. 12, 84 (2023).
Fiorenza, J. G. et al. Aspect ratio trapping: a unique technology for integrating Ge and III-Vs with silicon CMOS. ECS Trans. 33, 963 (2010).
Li, J. Z. et al. Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping. Appl. Phys. Lett. 91, 021114 (2007).
Waldron, N. et al. Integration of InGaAs channel n-MOS devices on 200 mm Si wafers using the aspect-ratio-trapping technique. ECS Trans. 45, 115 (2012).
Wen, P. et al. Waveguide coupled III-V photodiodes monolithically integrated on Si. Nat. Commun. 13, 909 (2022).
Han, Y. et al. Selective lateral epitaxy of dislocation-free InP on silicon-on-insulator. Appl. Phys. Lett. 114, 192105 (2019).
Xue, Y. et al. High-speed and low dark current silicon-waveguide-coupled III-V photodetectors selectively grown on SOI. Optica 11, 1219–1226 (2022).
Kunert, B. et al. III/V nano ridge structures for optical applications on patterned 300 mm silicon substrate. Appl. Phys. Lett. 109, 091101 (2016).
Kunert, B. et al. Integration of III/V hetero-structures by selective area growth on Si for nano- and optoelectronics. ECS Trans. 75, 409 (2016).
Kunert, B. et al. How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? A critical review on current approaches. Semicon. Sci. Technol. 33, 093002 (2018).
Baryshnikova, M. et al. Nano-ridge engineering of GaSb for the integration of InAs/GaSb heterostructures on 300 mm (001) Si. Crystals 4, 330 (2020).
Kunert, B. et al. Application of an Sb surfactant in InGaAs nano-ridge engineering on 300 mm silicon substrates. Crystal Growth Design 21, 1657–1665 (2021).
Van Thourhout, D. et al. Semiconductors and Semimetals Ch. 8 (Elsevier, 2019).
Mols, Y. et al. Structural analysis and resistivity measurements of InAs and GaSb fins on 300 mm Si for vertical (T)FET. J. Appl. Phys. 125, 245107 (2019).
Shi, Y. et al. Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer. Optica 12, 1468–1473 (2017).
Vais, A. et al. First demonstration of III-V HBTs on 300 mm Si substrates using nano-ridge engineering. In Proc. International Electron Devices Meeting (IEDM) 9.1.1–9.1.4 (IEEE, 2019).
Özdemir, C. I. et al. Low dark current and high responsivity 1020 nm InGaAs/GaAs nano-ridge waveguide photodetector monolithically integrated on a 300-mm Si wafer. J. Lightwav. Technol. 39, 5263–5269 (2021).
Kazi, Z. I. et al. Realization of GaAs/AlGaAs lasers on Si substrates using epitaxial lateral overgrowth by metalorganic chemical vapor deposition. Jpn J. Appl. Phys. 40, 4903 (2001).
Hasegawa, Y., Egawa, T., Jimbo, T. & Umeno, M. Influences of dark line defects on characteristics of AlGaAs/GaAs quantum well lasers grown on Si substrates. Jpn J. Appl. Phys. 34, 2994 (1995).
Colucci, D. et al. Unique design approach to realize an O-band laser monolithically integrated on 300 mm Si substrate by nano-ridge engineering. Opt. Express 30, 13510–13521 (2022).
Shi, Y. et al. Novel adiabatic coupler for III-V nano-ridge laser grown on a Si photonics platform. Opt. Express 27, 37781–37794 (2019).
Kunert, B. et al. How to control defect formation in monolithic III/V heteroepitaxy on (100) Si? A critical review on current approaches. Semiconductor Sci. Technol. 33, 093002 (2018).
Coldren, L. A. et al. Diode Lasers and Integrated Circuits (Wiley, 2012).
Strand, T. A. et al. Low regrowth-interface recombination rates in InGaAs-GaAs buried ridge lasers fabricated by in situ processing. Appl. Phys. Lett. 66, 1966–1968 (1995).
Tsvid, G. et al. Spontaneous radiative efficiency and gain characteristics of strained-layer InGaAs–GaAs quantum-well lasers. IEEE J. Quant. Electron. 44, 732–739 (2008).
Haglund, E. et al. 25 Gbit/s transmission over 500 m multimode fibre using 850 nm VCSEL with integrated mode filter. Electron. Lett. 48, 517–519 (2012).
Henry, C. H. Theory of the linewidth of semiconductor lasers. IEEE J. Quant. Electron. 18, 259–264 (1982).
Zhao, Y. et al. Spontaneous emission factor for semiconductor superluminescent diodes. J. Appl. Phys. 85, 3945–3948 (1999).
Hsieh, P.-Y. et al. Advanced current–voltage model of electrical contacts to GaAs-and Ge-based active silicon photonic devices. IEEE Trans. Electron Devices 70, 4274–4279 (2023).
Caer, C. GaAs nano-ridge laser diodes fully fabricated in a 300 mm CMOS pilot line. Zenodo https://doi.org/10.5281/zenodo.13286360 (2024).
Lv, Z. et al. Ultra-high thermal stability InAs/GaAs quantum dot lasers grown on on-axis Si (001) with a record-high continuous-wave operating temperature of 150 °C. Opt. Express 31, 24173–24182 (2023).