Supramolecular docking structure determination of alkyl-bearing molecules – Nature


  • Ohashi, Y. in Models, Mysteries and Magic of Molecules (eds Boeyens, J. C. A. & Ogilvie, J. F.) 109–113 (Springer, 2008).

  • Holden, A. & Morrison, P. Crystals and Crystal Growing (MIT Press, 1982).

  • Atwood, J. L., Davies, J. E. D. & MacNicol, D. D. Inclusion Compounds: Structural Aspects of Inclusion Compounds Formed by Inorganic and Organometallic Host Lattices (Academic Press, 1984).

  • Ooi, L. Principles of X-ray Crystallography (Oxford Univ. Press, 2010).

  • Sun, J.-K., Sobolev, Y. I., Zhang, W., Zhuang, Q. & Grzybowski, B. A. Enhancing crystal growth using polyelectrolyte solutions and shear flow. Nature 579, 73–79 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Inokuma, Y. et al. X-ray analysis on the nanogram to microgram scale using porous complexes. Nature 495, 461–466 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zigon, N., Duplan, V., Wada, N. & Fujita, M. Crystalline sponge method: X-ray structure analysis of small molecules by post-orientation within porous crystals—principle and proof-of-concept studies. Angew. Chem. Int. Ed. 60, 25204–25222 (2021).

    Article 

    Google Scholar
     

  • Metherall, J. P., Carroll, R. C., Coles, S. J., Hall, M. J. & Probert, M. R. Advanced crystallisation methods for small organic molecules. Chem. Soc. Rev. 52, 1995–2010 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Inokuma, Y., Arai, T. & Fujita, M. Networked molecular cages as crystalline sponges for fullerenes and other guests. Nat. Chem. 2, 780–783 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, S., Kapustin, E. A. & Yaghi, O. M. Coordinative alignment of molecules in chiral metal-organic frameworks. Science 353, 808–811 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Pei, X., Burgi, H.-B., Kapustin, E. A., Liu, Y. & Yaghi, O. M. Coordinative alignment in the pores of MOFs for the structural determination of N-, S-, and P-containing organic compounds including complex chiral molecules. J. Am. Chem. Soc. 141, 18862–18869 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Ogoshi, T., Kanai, S., Fujinami, S., Yamagishi, T. & Nakamoto, Y. para-Bridged symmetrical pillar[5]arenes: their lewis acid catalyzed synthesis and host–guest property. J. Am. Chem. Soc. 130, 5022–5023 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Xue, M., Yao, Y., Chi, X., Zhang, Z. & Huang, F. Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc. Chem. Res. 45, 1294–1308 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. Formation of linear supramolecular polymers that is driven by C−Hπ interactions in solution and in the solid state. Angew. Chem. Int. Ed. 50, 1397–1401 (2011).

    Article 

    Google Scholar
     

  • Ogoshi, T. et al. Host−guest complexation of perethylated pillar[5]arene with alkanes in the crystal state. Angew. Chem. Int. Ed. 54, 9849–9852 (2015).

    Article 

    Google Scholar
     

  • Shirley, M. Triheptanoin: first approval. Drugs 80, 1595–1600 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zand, D. et al. Regulatory news: Dojolvi (triheptanoin) as a source of calories and fatty acids in long-chain fatty acid oxidation disorders: FDA approval summary. J. Inherit. Metab. Dis. 44, 515–517 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ying, J., Tan, Y. & Lu, Z. Cobalt-catalyzed hydrothiolation of alkynes for the diverse synthesis of branched alkenyl sulfides. Nat. Commun. 15, 8057 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y. et al. Pillararene incorporated metal–organic frameworks for supramolecular recognition and selective separation. Nat. Commun. 14, 4927 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berg, B. G., Almaas, T. J., Bjaalie, J. G. & Mustaparta, H. Projections of male-specific receptor neurons in the antennal lobe of the oriental tobacco budworm moth, Helicoverpa assulta: a unique glomerular organization among related species. J. Comp. Neurol. 486, 209–220 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Zhao, X.-C. & Berg, B. G. Arrangement of output information from the 3 macroglomerular units in the heliothine moth Helicoverpa assulta: morphological and physiological features of male-specific projection neurons. Chem. Senses 35, 511–521 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Ebrahim, S. A. M., Dweck, H. K. M., Weiss, B. L. & Carlson, J. R. A volatile sex attractant of tsetse flies. Science 379, eade1877 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tai, W. et al. A lung-selective delivery of mRNA encoding broadly neutralizing antibody against SARS-CoV-2 infection. Nat. Commun. 14, 8042 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, K. et al. Biodegradable lipid-modified poly(guanidine thioctic acid)s: a fortifier of lipid nanoparticles to promote the efficacy and safety of mRNA cancer vaccines. J. Am. Chem. Soc. 146, 11679–11693 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, X. & Jiang, W. Enantioselective recognition of functional organic molecules in water by biomimetic macrocyclic hosts. J. Am. Chem. Soc. 146, 3900–3909 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Bijvoet, J. M., Peerdeman, A. F. & van Bommel, A. J. Determination of the absolute configuration of optically active compounds by means of X-rays. Nature 168, 271–272 (1951).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, S.-Y. et al. A chiral metal−organic material that enables enantiomeric identification and purification. Chem 3, 281–289 (2017).

    Article 

    Google Scholar
     

  • Zhang, S.-Y., Fairen-Jimenez, D. & Zaworotko, M. J. Structural elucidation of the mechanism of molecular recognition in chiral crystalline sponges. Angew. Chem. Int. Ed. 59, 17600–17606 (2020).

    Article 

    Google Scholar
     

  • Bruker APEX v.4 (Bruker AXS Inc., 2022).

  • Bruker APEX v.5 (Bruker AXS Inc., 2023).

  • SAINT v.8.40B (Bruker AXS Inc., 2022).

  • Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Cryst. 48, 3–10 (2015).

    Article 
    ADS 

    Google Scholar
     

  • TWINABS v.2012/1 (Bruker AXS Inc., 2012).

  • Sheldrick, G. M. SHELXT – integrated space-group and crystal-structure determination. Acta Cryst. A71, 3–8 (2015).


    Google Scholar
     

  • Sheldrick, G. M. Crystal structure refinement with SHELXL. Struct. Chem. 71, 3–8 (2015).


    Google Scholar
     

  • Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 42, 339–341 (2009).

    Article 
    ADS 

    Google Scholar
     



  • Source link

    Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Stay Connected

    0FansLike
    0FollowersFollow
    0SubscribersSubscribe

    Latest Articles