Ohashi, Y. in Models, Mysteries and Magic of Molecules (eds Boeyens, J. C. A. & Ogilvie, J. F.) 109–113 (Springer, 2008).
Holden, A. & Morrison, P. Crystals and Crystal Growing (MIT Press, 1982).
Atwood, J. L., Davies, J. E. D. & MacNicol, D. D. Inclusion Compounds: Structural Aspects of Inclusion Compounds Formed by Inorganic and Organometallic Host Lattices (Academic Press, 1984).
Ooi, L. Principles of X-ray Crystallography (Oxford Univ. Press, 2010).
Sun, J.-K., Sobolev, Y. I., Zhang, W., Zhuang, Q. & Grzybowski, B. A. Enhancing crystal growth using polyelectrolyte solutions and shear flow. Nature 579, 73–79 (2020).
Inokuma, Y. et al. X-ray analysis on the nanogram to microgram scale using porous complexes. Nature 495, 461–466 (2013).
Zigon, N., Duplan, V., Wada, N. & Fujita, M. Crystalline sponge method: X-ray structure analysis of small molecules by post-orientation within porous crystals—principle and proof-of-concept studies. Angew. Chem. Int. Ed. 60, 25204–25222 (2021).
Metherall, J. P., Carroll, R. C., Coles, S. J., Hall, M. J. & Probert, M. R. Advanced crystallisation methods for small organic molecules. Chem. Soc. Rev. 52, 1995–2010 (2023).
Inokuma, Y., Arai, T. & Fujita, M. Networked molecular cages as crystalline sponges for fullerenes and other guests. Nat. Chem. 2, 780–783 (2010).
Lee, S., Kapustin, E. A. & Yaghi, O. M. Coordinative alignment of molecules in chiral metal-organic frameworks. Science 353, 808–811 (2016).
Pei, X., Burgi, H.-B., Kapustin, E. A., Liu, Y. & Yaghi, O. M. Coordinative alignment in the pores of MOFs for the structural determination of N-, S-, and P-containing organic compounds including complex chiral molecules. J. Am. Chem. Soc. 141, 18862–18869 (2019).
Ogoshi, T., Kanai, S., Fujinami, S., Yamagishi, T. & Nakamoto, Y. para-Bridged symmetrical pillar[5]arenes: their lewis acid catalyzed synthesis and host–guest property. J. Am. Chem. Soc. 130, 5022–5023 (2008).
Xue, M., Yao, Y., Chi, X., Zhang, Z. & Huang, F. Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc. Chem. Res. 45, 1294–1308 (2012).
Zhang, Z. et al. Formation of linear supramolecular polymers that is driven by C−H…π interactions in solution and in the solid state. Angew. Chem. Int. Ed. 50, 1397–1401 (2011).
Ogoshi, T. et al. Host−guest complexation of perethylated pillar[5]arene with alkanes in the crystal state. Angew. Chem. Int. Ed. 54, 9849–9852 (2015).
Shirley, M. Triheptanoin: first approval. Drugs 80, 1595–1600 (2020).
Zand, D. et al. Regulatory news: Dojolvi (triheptanoin) as a source of calories and fatty acids in long-chain fatty acid oxidation disorders: FDA approval summary. J. Inherit. Metab. Dis. 44, 515–517 (2021).
Ying, J., Tan, Y. & Lu, Z. Cobalt-catalyzed hydrothiolation of alkynes for the diverse synthesis of branched alkenyl sulfides. Nat. Commun. 15, 8057 (2024).
Wu, Y. et al. Pillararene incorporated metal–organic frameworks for supramolecular recognition and selective separation. Nat. Commun. 14, 4927 (2023).
Berg, B. G., Almaas, T. J., Bjaalie, J. G. & Mustaparta, H. Projections of male-specific receptor neurons in the antennal lobe of the oriental tobacco budworm moth, Helicoverpa assulta: a unique glomerular organization among related species. J. Comp. Neurol. 486, 209–220 (2005).
Zhao, X.-C. & Berg, B. G. Arrangement of output information from the 3 macroglomerular units in the heliothine moth Helicoverpa assulta: morphological and physiological features of male-specific projection neurons. Chem. Senses 35, 511–521 (2010).
Ebrahim, S. A. M., Dweck, H. K. M., Weiss, B. L. & Carlson, J. R. A volatile sex attractant of tsetse flies. Science 379, eade1877 (2023).
Tai, W. et al. A lung-selective delivery of mRNA encoding broadly neutralizing antibody against SARS-CoV-2 infection. Nat. Commun. 14, 8042 (2023).
Yang, K. et al. Biodegradable lipid-modified poly(guanidine thioctic acid)s: a fortifier of lipid nanoparticles to promote the efficacy and safety of mRNA cancer vaccines. J. Am. Chem. Soc. 146, 11679–11693 (2024).
Yang, X. & Jiang, W. Enantioselective recognition of functional organic molecules in water by biomimetic macrocyclic hosts. J. Am. Chem. Soc. 146, 3900–3909 (2024).
Bijvoet, J. M., Peerdeman, A. F. & van Bommel, A. J. Determination of the absolute configuration of optically active compounds by means of X-rays. Nature 168, 271–272 (1951).
Zhang, S.-Y. et al. A chiral metal−organic material that enables enantiomeric identification and purification. Chem 3, 281–289 (2017).
Zhang, S.-Y., Fairen-Jimenez, D. & Zaworotko, M. J. Structural elucidation of the mechanism of molecular recognition in chiral crystalline sponges. Angew. Chem. Int. Ed. 59, 17600–17606 (2020).
Bruker APEX v.4 (Bruker AXS Inc., 2022).
Bruker APEX v.5 (Bruker AXS Inc., 2023).
SAINT v.8.40B (Bruker AXS Inc., 2022).
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Cryst. 48, 3–10 (2015).
TWINABS v.2012/1 (Bruker AXS Inc., 2012).
Sheldrick, G. M. SHELXT – integrated space-group and crystal-structure determination. Acta Cryst. A71, 3–8 (2015).
Sheldrick, G. M. Crystal structure refinement with SHELXL. Struct. Chem. 71, 3–8 (2015).
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 42, 339–341 (2009).